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On Optimal Integration Methods for Volterra 
Integral Equations of the First Kind 

By C. J. Gladwin 

Abstract. Families of methods depending on free parameters are constructed for the solution 
of nonsingular Volterra integral equations of the first kind in [5]. These parameters are 
restricted to certain regions in order that a certain polynomial satisfies both a stability and a 
consistency condition. In this note an optimal choice of the free parameters is outlined in 
order that the 12-norm of the roots of the polynomial is minimized. 

1. Introduction. Consider the linear Volterra integral equation of the first kind 

(I.1) 1 K(x, t)y(t) dt =f(x), 

wheref, K are given functions on 

SI = {x I O < x < a} and S2= (x, t )0 < t < x < a}. 

It will be assumed that sufficient regularity conditions are satisfied by f and K in 
order that a unique regular solution y(x) exists on [0, a]. See also [12], for example. 

On the mesh 

IN= {x, = nh I n = O(1)N, Nh = a, h > O} C S1 

approximations Yn to the exact solution y(xn) are generated by the family of 
integration rules Q(C, B, r) of the form: 

p n p+l 

(1.2) h 2 ciK(xn, XJ)yi + E h 2 b1K(xn, X1-))Y1-i =f(x), 
i=O j=p+ I i=O 

n = p(I)N. 

The following brief remarks pertaining to (1.2) are noted here, see also [5]. 
(1) p starting values yo, Y1, .. . ,yP -1 are needed before (1.2) can be implemented. 
(2) The vector C E RP+? consists of the closed Newton-Cotes quadrature weights 

with step number p. 
(3) The vector B E RP+2 is (partially) determined by the linear system 

(1.3) iJb, = y I = 0(l)r -I <p + 1; 0' J -- j0 
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(4) The remaining p + 2 - r parameters bi: i= O(l)p + 1 - r, say, are con- 
strained so that the polynomial 

P+ I 

(1.4) p(z) 2 bizP+'-' 
i=O 

is simple von Neumann. (The full rank, r = p + 2, case is only of use if p = 0. See 
also [71.) 

We will be interested in the following classes of polynomials in this note. 
Definition 1. Let P(z) be a real polynomial of exact degree n. Then 
(a) P(z) is simple von Neumann if P(z) = 0 implies I z < 1 with zeros on the unit 

circle being simple. 
(b) P(z) is Schur if P(z) = 0 implies I z I < 1. 
(c) P(z) is Hurwitz if P(z) = 0 implies Re(z) < 0. 
It is well known that P(z) is Schur if and only if 

Q(w) (w - I)nP((w + 1)/ (w _ 1)) 

is Hurwitz; see [3] for an excellent survey of such results. 
With these choices for C and B, and assuming the starting errors en = Yn-Y(Xn) 

=O(hr)n = O(l)p - 1, the method (1.2) was shown to have an error en = (hr), 
n = O(l)N. 

It should be mentioned here that other authors, [9], [10], [14], and [1], have 
considered cyclical multi-step methods recently with the latter even calling their 
methods "if not optimal, at least good practical methods". The idea of their methods 
is that a number of different end formulae (the B of (1.2)) have to be used cyclically, 
necessitating an inordinate number of parameters. Many of these are used up in a 
" trivial" fashion to place as many roots as possible of their characteristic polynomial 
at the origin. However, they still maintain the necessity of solving a linear system as 
well as a nonlinear system to fulfill the accuracy and stability requirements, respec- 
tively. 

2. Determination of the Free Parameters. The main result of this note is to display 
a system of p + 2 - r linear equations to be solved for the free parameters, in 
addition to the r consistency conditions (1.3). We first give some motivation for this 
system. 

The error en of the method (1.2) has an asymptotic expression, n xc, h 0, 
nh = xn 

p 

(2.1) e = hre(xn) + hr 2 Zdk(n) + O(hr+?) 
k=O 

where 
(a) e(xn) is the "magnified error" function, 
(b) Zk are the zeros of p(z) defined in (1.4), 
(c) dk(x) are solutions of the initial value problems 

K(x, x)d(')(x) - ZkKt(x, x)dk(x) = 0, dk(O) dk, 
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where K is given in (1.1), and 
(d) the dk satisfy the linear system 

p 

nd e -e(xn), n = 0()p. 
k=O 

See also [8], [6], and [11]. The latter only considered the case r = p + 2, p = 0 (i.e., 
the trapezoidal method applied to (1.1)). We also note that in the case that p(z) has 
multiple roots, necessarily interior to the unit circle, only the system in (d) need be 
modifi'ed-i.e., m linearly independent column vectors must be added to the 
coefficient matrix. These take the form (Un, nun,... ,n(n - 1) - (n - m + 2)Un) 

corresponding to a multiple root u of a fixed multiplicity, m > 1. We observe that if 
p(z) is simple von Neumann, the phenomenon of marginal instability occurs if 
I dk((x) are increasing functions, but can be eliminated by making p(z) Schur. 

Thus, it is natural to choose the free parameters of p(z) so as to try to minimize 
some norm of the roots, in addition to the previously mentioned stability and 
consistency conditions. In particular, we choose the square of the 12-norm in view of 
the following observations: 

(1) 2 1 I zi 12 > 2= 1 z2, where z1 are the zeros of a real polynomial of exact degree 
n. Also, equality only occurs if all the zi are real. 

(2) i = z1 > nfl_ 1 I z1 2/n with equality only if zi z, say, for all i. 
Thus we desire to try to make p(z) have an many equal real roots as possible. 

Obviously we cannot make p(z) have a single root of multiplicity p + 1, since we 
only have p + 2 - r parameters at our disposal. Also, we choose the smallest p for a 
given r, compatible with stability, to ensure the use of the fewest free parameters as 
possible. 

The following theorem is the main result of this note. It shows how to construct 
the system of linear equations for the free parameters. 

THEOREM 1. (1) Assume p(z) is as in (1.4) with its coefficients satisfying (1.3). 
(2) Assume T(w) = Ep+j' Tiwl is the transformed version of p(z) using the Mobius 

map 

z+1 w+1 
z-1' w-1- 

Then 

(1) TI: i = 0(1)p + 1 - r depend linearly on the free parameters. 

(2) abj = 0, i p + 2 -r(l)p + 1, 

Proof. The system (1.3) may be solved in terms of the free parameters as follows, 
[13], 

(2.2) bp+I-r+i 1)! (ri P(x)dx- 2 sl(k)bk} 
k=O 

with s1(X) =fjr=i;"I#[X- (p + 1 - r + j)], l(l)r. 
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We shall denote the first term on the right of (2.2) by Ari for a given number of 
free parameters. A simple calculation shows 

abP r+(l) n + i( - -)( n i) = say, 
,2-r-n 

i l(l)r, n = l(l)p + 2 -r (or k = p + 1- r(-l)O). 

Now p(z) may be written as 
p +2-r r r 

(2.3) P(Z) = 2 bp+2-r-n Zn+r-n + V VnriZr-) + rizr-i. 
n=1 i=l i= 

Denote the first term of (2.3) by q(z) which is a polynomial of degree p + 1 whose 
coefficients are only (linearly) dependent on the free parameters. If we write q(z) in 
powers of z - 1, we assert that the coefficients of the terms (z - )j, j = O(I)r - 1 
vanish. We return to this assertion later so as not to interrupt the flow of the proof. 

We calculate T(w) = (w- )P+lp((w + 1)/(w - 1)). The powers (z - 1)1 be- 
come 

P+-1 1 _ _ - 
(w 1) w _ 1- 2j(w - )+', j r(l)p + 1, 

so that only Ti: i O(l)p + 1- r depend linearly on the free parameters, while the 
remaining coefficients are independent of them. 

Returning to our assertion, we replace z by [1 + (z - 1)] in q(z), expand the 
binomials in powers of z - 1, and interchange the order of summation in the second 
term of q(z). This yields: 

(2.4) q (z) p+2- 
bp+2nn-, 

\ (n +r 
z- 1)( 'n+r-lI-j 

p+2-r r- I r n r1j 

+ r {bp+2+r-n 2 )+ j Vnri( r7)}(z-1) 

We now show that the factor { ... vanishes for all j = O(I)r - 1. It will suffice to 
consider only n = p + 2 - r. Insert a factor 

i r -j! p + 1-j! 
i r -j! p + 1-j! 

inside the sum over i, cancel, and use 

i = I 
p+ 1-r 

p + 1-r +i p + 1-r + i 

The inner sum becomes 

I (1)i( ) - (p + 1 r) E - 1-r +iri 

The first sum is 0 since (1 )r-j = 0. For the second sum we use the binomial 
identity 

x 1 r m r(2.5) m f exO 

with x= p +1-r xn m = -.(2.5 ma be fon in[]oreape 
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It should be noted that the use of (2.5) does not cover the case r= p + 1. 
However, returning to (2.3), it is easily seen that q(z) = bo(z - l)P+ . This com- 
pletes the proof. 

Remarks. (1) The idempotent map w = (z + l)/(z - 1) transforms the unit circle 
of the z plane to the left half of the w plane in a 1-1 fashion. In particular, equal 
roots of p(z) correspond to equal roots of T(w). This suggests using the system of 
linear equations 

(2.6) (1)(wo) = 0, i = 0(1)p + 1- 

where w0 is one of the at most r - 1 real roots of T (p+2-r)(w). We choose that w0 
which makes T(w) a Hurwitz polynomial, if possible. 

(2) Thus the p + 2 coefficients of p(z) can be completely determined by (1.3) and 
(2.6), on a machine. Note that we must check that the coefficients of T(w) yield a 
Hurwitz polynomial for each w0, but even this can be done mechanically when the 
coefficients are numerical. See some algorithms in [3], for example. 

(3) Here we shall only illustrate the coefficient matrix of the system (2.6) in the 
case r = p, i.e., 

F 8(p + 1)2P(wo - 1) + 2P+' 2P(wo - 1) d(F) 22p+ 

L1 (p + 1)2P 2P ] 

to be solved for the vector S = (bo b1)T. 

3. Examples and Conclusions. We first consider two methods, Q(C, B, r), which 
are indeed optimal. 

(1) r = 2, p = 1, 

T(w) = (4bo - 2) + w + w2, (M)(w) = 1 + 2w. 

Using w0 = 1/2, we obtain bo = 9/16. In this case we actually get two equal real 
roots of p(z); z1,2 

- -1/3. T(w) is Hurwitz for bo > 1/2. 
(2) r 3, p = 2, 

T(w) - (8bo - 11/3) + (2/3)w + 2w2 + W3, T(O)(w) = (2/3) + 4w + 3w2. 

Only the root w0 = (-2 + 21/2)/3 makes T(w) a Hurwitz polynomial. In this case 
we obtain bo = (95 + 4(2)1/2)/216. T(w) is Hurwitz for bo such that 11/24 < bo < 
15/24; see also [5]. Again, in this case, we have all real roots with as many equal 
roots as possible. 

Rather than use the irrational bo above, we shall use bo = 7/15 which agrees to 3 
places of decimals. A slightly better approximation is bo = 706/1515, to 5 places of 
decimals. 

We note that in [2], methods with bo = 9/16 r = 2 and bo = 23/48 r = 3 are 
considered, but no reason for these choices are given. 

The following Volterra equation will be solved. 

(3.1) 1 exp[-(x-t)]y(t)dt=sinhx, 0<x<5, 
0 
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which has the exact solution y(x) = exp(x). The phenomenon of marginal instabil- 
ity, recall (2.1), does not occur in this equation. Thus we shall solve it by our two 
optimal methods as well as by methods where p(z) is simple Von Neumann in order 
to see how much improvement in the numerical solution we get between the "worst" 
and the "best" methods. 

TABLE 1 

Methods Q(C,B,r) 

r p b zeroes of p(z), z I lzI 1 2 

2 1 1/2 0,-1 1.000 

2 1 9/16 -1/3,-1/3 0.222 

3 2 15/24 1/3, (-1+2(6)2 i)/5 2.111 

3 2 7/15 0.234,-0.671?0.856i 0.969 

The polynomials, p(z), are: 

p = 1: p(z) = boZ2 + (3/2 - 2bo)z + bo - 1/2, 

p = 2: p(z) = boz3 + (23/12 - 3bo)z2 + (3bo - 16/12)z + 5/12 - bo. 

We also remark that for the actual optimal bo = (95 + 4(2)1/2)/216, in the case 
p 2, the 12-norm is 0.961. Also, for the method corresponding to r= 3, p = 2, 

bo = 11/24, p(z) has zeros z23 = - 1, (- 1 ? 2(3)1 /2)/li with II Zi II 2 1.215, so 
that we took bo = 15/24 as the "worst" method. 

(3.1) was solved with step sizes h = 0.1 and h = 0.05. Exact starting values were 
used when needed. All computations were performed on the Honeywell sigma 9 (in 
double precision, i.e., a 64 bit word) at the Communications Research Centre in 
Ottawa. A selection of numerical results is displayed in Table 2. 

Remarks. (1) The "optimal" method of order 2 actually, has larger errors than the 
"worst" method. However, the latter has a root of p(z) at the origin, which means 
the summation in (2.1) has only one term. On the other hand, the errors of the 
"optimal" method of order 3 are less than those of the "worst" method. 

(2) In any case, the importance of this method of construction is not to minimize 
the errors for a given order r, but rather to permit a mechanical, lexicographical 
search, for a given pair of positive integers (r, p) with r < p + 2, for polynomials 
p(z) which are Schur. 

(3) In [5] and [6], it was observed that for r = p + 1 (one free parameter) T(w) has 
coefficients of opposite signs for 3 < p < 5 and hence cannot be Hurwitz for any bo; 
see [3], e.g.. Thus one might conjecture that r = 3 is the highest order one can obtain 
with one free parameter. However, using the crude and arbitrary choice, b, = 0: 
i = 0(l)p + 1 - r, it can be shown that T(w) is Hurwitz forp = 19, at least. 
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TABLE 2 
Numerical Results 

len I' Iy - Y(X )I 

h y(x) n ~~~~~n 
b0 1/2 b0 = 9/16 b0 15/24 bo = 7/15 

r 2 r=2 r 3 r=3 

1.0 0.10 1.2 x 10-3 1.5 x 10-2 1.7 x 10-3 3.5 x 10-4 

2.7182818 

0.05 5.3 x 10-4 3.9 x 10-3 7.9 x 10-4 2.3 x 10-4 

2.0 0.10 2.2 x i0-2 4.1 x 10-2 1.3 x 1o-2 4.7 x 10-3 

7.3890561 

0.05 5.5 x 10-3 1.1 x 10-2 1.8 x 103 6.3 x 10-4 

3.0 0.10 6.6 x 10-2 1.1 x 10-1 3.4 x 10-2 1.3 x 10-2 

20.0855369 

0.05 1.6 x 10-2 2.9 x 10-2 4.5 x 10-3 1.7 x 10-3 

4.0 0.10 1.8 x 10-1 3.0 x 10-1 9.2 x 10-2 3.5 x io-2 

54. 5981 500 

0.05 4.5 x i0-2 7.8 x 10-2 1.3 x i0-2 4.7 x 10-3 

5.0 0.10 4.9 x 10-1 8.3 x 10-1 2.5 x 10-1 9.5 x 1o-2 

148.4131591 

0.05 1.2 x 10-1 2.1 x 10-1 3.4 x 10-2 1.3 x 10-2 
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